1. **Introduction** – This workplan has been prepared to outline the procedures that are being undertaken to control odors and fugitive dust associated with demolition of the Gas Holder at the Gas Supply Area of the former Indianapolis Coke operated by Citizens Energy Group.

Future demolition activities at the Indianapolis Coke site will be evaluated based on the potential for odor and fugitive dust and a site-specific plan will be developed to control and mitigate odors from those activities.

2. **Background** – In April 2012, Citizens began demolition of the Gas Supply Area at its former Indianapolis Coke Plant site on Prospect Street on the southeast side of Indianapolis. This demolition included the Gas Holder that has towered over this area of the city since 1936.

Despite removing the contents of the Gas Holder and cleaning the interior tank surfaces prior to demolition, neighbors began complaining about odors in July 2012, during a spell of extremely hot, dry, sunny and stagnant weather. In response, Citizens promptly collected samples of the air in and around the job site. The air samples revealed the presence of trace level constituents that are consistent with the coke oven gas that was stored in the Gas Holder during plant operations. While the concentrations of the detected constituents were well below any occupational health-based criteria established by the Occupational Health and Safety Administration (OSHA), the concentration of some constituents exceeded the odor threshold, which Citizens believes resulted in odors being associated with this demolition work. Citizens has implemented the following work practices and monitoring to assess and control compounds believed to drive the potential for odors during the remainder of the project.

3. **Work Practices** – During demolition activities, there is the potential that some dust will be present in the immediate working area(s) of the job site as a result of cutting and/or moving scrap materials. A fugitive dust plan has been
developed and implemented to control and minimize the potential for fugitive dust emissions. Additional work practices will be conducted in a manner to further minimize the potential for odor and dust emissions. These work practices include:

a. Extended work hours to complete the project more quickly

b. Removal of scrap metal quickly after it has been cut and prepared for shipment to minimize the amount of residual material being staged on-site

c. Regular spraying of water during work activities to control dust, cool down the work surfaces to suppress dust and minimize the potential for odor-causing emissions

d. Application of odor suppressing foam during work activities and each evening at the end of each work day to create an odor suppressing foam blanket over the work areas and scrap piles to minimize emissions

e. Removal of standing water in and around the work area at the end of each work day to eliminate potential odor-causing emissions from liquid surfaces

4. Monitoring – monitoring will be performed throughout the project to evaluate the effectiveness of this Odor and Dust Control Workplan and to make continuous and ongoing improvements in work practices. This monitoring will include:

a. Routine inspections of the work and perimeter areas to ensure work practices specified in #3 above are being followed, including visual observations of the work and perimeter areas for fugitive dust.

b. Portable field screening for Total Organic Vapors (TOVs) within the work zone and at the perimeter of the project site along the fenceline. TOV screening will be performed using a portable Photoionization Detector (PID) calibrated to a detection range of 0.1 to 100 ppm. Screening will be performed on an ongoing basis while work is being performed and results will be recorded in a log at least three times each day (morning, mid-day and end of day). Odor suppression foam will be applied, as necessary, on structures, equipment, and scrap piles within
the work zone where elevated TOVs (and the potential for associated odors) and fugitive dust are observed.

c. Perimeter Ambient air monitoring for Volatile Organic Vapor. Ambient air samples will be collected with three (3) Summa canisters located at various stations located along the perimeter of the work area and one background sample along the fenceline of the property for a 24-hour period. These samples will be sent to a laboratory to measure the concentration of specific VOC constituents, if any that are present at the perimeter of the project site along the fenceline.

5. Reporting & Response Action - Reports will be prepared to present the monitoring data along with relevant meteorological data.

 a. TOV Data Evaluation and Response - If TOV results in excess of 1 parts per million (ppm) within the work zone are observed, additional odor control measures will be implemented (e.g., additional water spray, foam application, revised work practices, etc.). If TOV results in excess of 5 ppm above background are observed at the site perimeter (along the fenceline) additional control measures will be implemented and additional monitoring conducted.

 b. Volatile Organic Constituent (VOC) Data Evaluation and Response - Weekly VOC data will be reviewed to determine if ambient air criteria are approached or exceeded. The data will be compared to regulatory criteria published by OSHA for worker protection; one-tenth (1/10) of the OSHA standard will be used as the screening level criteria. Additionally, this VOC data will be reviewed to determine if any modifications to this Workplan are appropriate to control odors/emissions from site activities.

 c. Fugitive Dust Observations and Response - If airborne fugitive dust is observed leaving the work area, additional dust suppression techniques will be implemented (e.g., additional water spray, foam application, revised work practices, etc.).

 d. Reporting - All monitoring data results will be posted weekly to the Citizens’ Energy website located at the following address: http://www.citizensenergygroup.com/PProspect.aspx